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Abstract
Using an extended Hubbard model, we calculate the many-body states of various
transition-metal (TM) ions in the full spherical symmetry, thus accounting
for the electronic correlations in TM oxides (TMOs). The influence of the
symmetry of the bulk (cubic) crystal and of an (001) surface is described by a
ligand-field procedure. The Slater integrals are fitted to gas phase data, EELS
experiments, and low-lying states from ab initio theory. We present spectra of
second harmonic generation from the bulk states and from the (001) surfaces.

1. Introduction

The current speed of magnetic recording is of the order of nanoseconds, i.e. close to a single
precession cycle of the magnetization (Larmor frequency). Achieving a significantly higher
speed will require completely new approaches, such as hybrid or optical recording. In order to
overcome the deficiencies of the contemporary computer memories and read–write heads of
hard disks, both permanent and dynamic, new designs like magnetic random access memories
(MRAMs) are under development [1]. They will eliminate the mechanical motion and the
hierarchical structure of the contemporary memories and simplify the design of the CPUs.
One of the most important components of these MRAMs is tunnelling magnetoresistance
(TMR) devices, where the read-out current passing through the device depends on the relative
magnetization of two ferromagnetic (FM) layers. The central layer of such a trilayer structure
consists of an oxide sandwiched between a soft and a hard magnetic layer (often a ferro-
/antiferromagnetic exchange-bias system). Therefore, the performance of these future devices
depends heavily on the properties of oxides. Besides, one of the ferromagnetic layers is
‘pinned’ by an antiferromagnet (exchange bias). Thus, the investigation of antiferromagnetic
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(AF) oxides (also of their spin dynamics) is of technological importance. In addition, NiO
may have advantages as a non-metallic seed layer and also as a magnetic tunnelling barrier.
As a further development, nano-oxide structures are proposed in order to replace the whole
exchange-biased system of the tunnel junction.

For these applications it is necessary to develop a technique in order to investigate AF
oxide surfaces and buried interfaces. Besides, the preparation of TM oxide films is already a
challenge and requires a method to characterize the structure and magnetism of these materials.
Optical second harmonic generation (SHG) may be such a technique, since conventional linear
optical techniques, such as linear magnetic dichroism, if able to see magnetic signals on
antiferromagnets at all, quadratically couple to the magnetic order parameter and therefore
cannot distinguish them from possibly competing ferromagnetic signals. SHG, which linearly
couples to the AF order parameter, has already been proven as a versatile technique for the
investigation of ferromagnetism at surfaces, and is also proficient in discriminating AF signals
from FM ones. The sensitivity of this technique to volume antiferromagnetism has been
shown experimentally [2] and explained theoretically [3]. The sensitivity of SHG to surface
antiferromagnetism has been predicted theoretically [4–6]. The appropriate choice of the
experimental geometry enhances the selectivity of this method. One may choose different
incoming and outgoing angles and exploit certain combinations of polarizer and analyser
angles.

Excited states in TM oxides have always been difficult to access theoretically due to the
highly correlated 3d electrons. The localized nature of these optically active states makes
them more amenable to theoretical methods usually applied for small clusters rather than
to band-structure approaches commonly used for extended solids [7]. In our approach, these
pronounced local-symmetry features are addressed by allowing for the full spherical symmetry
of the Hamiltonian of a free ion and subsequently lowering the symmetry by the ligand field
of the surface. The correlations are taken into account by coupling two, three, and four
holes in the 3d and 4s shells. This significant extension of our previous results for the two-
hole configuration [4, 8] permits us to compute the electronic many-body structure of the
majority of TMOs, in particular also CoO and FeO and their surfaces, thus demonstrating the
versatility of our theoretical methods. Previous results of our calculations, already allowing for
some technologically important predictions (fast spin dynamics accompanied by a long lasting
coherence, laser-driven remagnetization), were presented in [8]. The system addressed in that
earlier work, due to the restrictions of the theory to two-hole couplings, was a prototypical Ni2+

ion on NiO(001). Now we can address different electronic configurations of various materials
with similar structure. In this work, for the sake of consistency, we treat one surface orientation
[(001)] and one spin structure of all three cubic AF oxides, NiO, CoO, and FeO.

2. Theory

The source of the SHG response is the nonlinear electrical polarization P(2ω)

el given by

P(2ω)

el,i = ε0χ
(2ω)
i jk : E (ω)

j E (ω)
k . (1)

Here, E (ω) is the electric field of the incident light, while ε0 is the vacuum permittivity and χ
(2ω)

i jk
is the nonlinear magneto-optical susceptibility tensor within the electric-dipole approximation.
Thus, the calculation of the χ

(2ω)

i jk tensor allows for the prediction of the SHG response of TMO
surfaces. The nonvanishing elements of this tensor can be determined, for a given surface
structure, by symmetry analysis [4, 5]. To obtain quantitative results, however, an electronic
calculation is required, which has been outlined in [8]. Here, we describe this procedure in
more detail and extend it to a generalized electronic configuration.
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Table 1. The energy levels (in eV) of the Ni2+ ion with 3d24s2 configuration in the spherical
symmetry (see footnote 5).

Hole configurations 3d24s0 and 3d24s2

State Energy for NiO

E(1S) = C2n +14B +7C 7.0677
E(3P) = C2n +7B 2.1276
E(1D) = C2n −3B +2C 1.8370
E(3F) = C2n −8B 0.0000
E(1G) = C2n +4B +2C 2.8299

C22 = 1.1038, B = 0.1418, and C = 0.5639 for NiO

In TMO, optical SHG results from the states lying within the optical gap. These states are
formed by highly correlated 3d electrons of the metal ion and thus are highly localized. The
optical transitions between the 3d states of the TM ion become allowed by the surface symmetry
breaking. Charge-transfer excitations to oxygen states start at or above the optical gap, which
is 4.3 eV for NiO. Consequently, we limit ourselves to the electronic states localized on the
metal ion. First, we determine the states for the spherical symmetry, then we introduce the
crystal field, which lowers the symmetry. The surface states of the TM ion are thus determined
by a ligand-field method. This parametrized approach is general enough to address all the
materials which we aim to calculate (NiO, CoO, and FeO). Only the parameters have to be
fitted to independent experiments or to results of first-principles calculations specific for each
material.

2.1. Two-hole states in the spherical symmetry

We begin with the electronic configuration 3d84s0 (corresponding hole configuration 3d24s2),
which is the ground state configuration of Ni2+ in NiO4. We have to note that the inclusion of
a fully occupied shell (as 4s2 here) only shifts the zero of energy (the term C2 in table 1) but
neither affects the energies of the individual states differently nor does it affect the symmetry
of the wavefunctions. Thus it suffices to consider partially occupied shells only.

The correlation of d electrons couples the two holes in the d shell of the ion, in the limit
of weak spin–orbit coupling, by an LS coupling (neglecting the spin–orbit coupling (SOC)).
The resulting coupled states have quantum numbers which are expressed as

Lz = lz,1 + lz,2

Sz = sz,1 + sz,2.
(2)

Here, the lz,i and sz,i (i = 1, 2) denote the z-components of orbital and spin momenta of the
i th hole, respectively. From equation (2) it becomes clear that the orbital momentum of the
coupled state constructed from two d holes can be 0, 1, 2, 3, or 4, which is conventionally
labelled by the spectroscopic symbols as S, P, D, F, and G. The resulting spin can be equal to
zero or unity; in other words, each of these states can have a singlet or triplet spin multiplicity.
Since the two holes are indistinguishable, the Pauli principle forbids two identical holes to
produce a coupled state. This limitation leaves us with the following set of two-hole states:
1S, 3P, 1D, 3F, and 1G [9]. These spherical-symmetry adapted states are produced from simple

4 Throughout this work, we assume a transfer of an integer number of electrons to the oxygen atom.
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products of d holes with the use of Clebsch–Gordan decomposition

{dl=2,s=1/2 ⊗ dl=2,s=1/2}L ,M,S,Sz
=

∑

m1,m2,sz1,sz2

C L M
2,m1,2,m2

· C SSz

1/2,sz1,1/2,sz2

· d2,m1,1/2,sz1 · d2,m2,1/2,sz2 (3)

where dl,m,s,sz denotes a single-particle basis function defined by the set of quantum numbers
l, m, s, sz and C J M

j1,m1, j2,m2
are the Clebsch–Gordan coefficients, followed by a Gram–Schmidt

orthonormalization procedure. As a result we obtain orthonormal wavefunctions for these
spherical states, expressed as linear combinations of simple antisymmetric products of d-hole
wavefunctions (Slater determinants).

The determination of the energy levels for these states requires the solution of the following
many-body Hamiltonian:

Ĥsph =
N∑

i=1

Ûi +
1

2

N N∑

i �= j

Q̂i j , (4)

where the one-hole operator Ûi describes the kinetic energy of the i th particle and its interaction
with the nucleus, while the two-hole operator Q̂i, j accounts for the electrostatic Coulomb
interaction between different holes, and N is the number of particles that form the many-body
states.

The Hamiltonian commutes with all components of the resultant angular momenta L and
S; therefore, there are no matrix components connecting states with different values L2, S2,
Lz , and Sz . The spin dynamics for the models described later exclusively results from the
dephasing due to the quantum nature of the system and has no classical analogue. Note that
the energy of the 3d24s2 and 3d24s0 configurations does not depend on the values of Lz and
Sz , which means that the states are degenerate.

The energy levels of the states are presented in table 1 (the last column contains the
calculated energies for the Ni2+ ion in eV).5 Comparing the values computed within CFT with
those provided experimentally gives the possibility to estimate the reliability of CFT results
for the materials under consideration.

The common term C2n (which is Cmn for the 3dm4sn configuration) does not depend on
the values of L and S and describes the interaction with the nucleus, kinetic energies, and
two-particle 3d–4s interactions.

The constants B and C (so-called Racah parameters) result from the interaction of 3d holes.
The parameters Ci j (where i and j are numbers of 3d and 4s particles in the incomplete
shells of the metal ion) are usually referred to as the Racah parameter A. However, we
decided to separate Ci j from B and C in order to compare the two latter parameters for
the systems being explored. They can also be expressed in terms of Slater integrals as
B = F2(3d, 3d) − 5F4(3d, 3d), and C = 35F4(3d, 3d).

Knowing the value of these parameters will allow us to determine the energy levels of
the 3d24s2 states of a free Ni2+ ion. Although the values of these parameters have been
found already, we repeated the calculations taking into account experimental results which
appeared after the publication [10] and found an agreement with the results presented by
Griffith (who estimates B = 0.134 − 0.137 − 0.129 and C = 0.545 − 0.508 − 0.471 for free
ions Ni2+–Co2+–Fe2+ accordingly; see tables 1, 2, and 4). The fitting of these parameters is
described below.

5 In tables 1, 2, 3, 4, 8, 9, 10, 11, 12, 13 the energies given in italic font denote the energies of levels for fitting the
crystal-field theory (CFT) parameters. All the energies in the tables result from CFT while the ‘input’ energies are
given in the text.
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Table 2. The energy levels (in eV) of Co2+ ion with 3d34s2 configuration in the spherical symmetry
(see footnote 5).

Hole configurations 3d34s0 and 3d34s2

State Energy for CoO

E(2P) = C3n −6B +3C 2.6928
E(4P) = C3n 1.8893
E(a2D) = C3n +5B +5C −α 2.9576
E(b2D) = C3n +5B +5C +α 7.2778
E(2F) = C3n +9B +3C 4.5820
E(4F) = C3n −15B 0.0000
E(2G) = C3n −11B +3C 2.0630
E(2H) = C3n −6B +3C 2.6928

α = √
193B2 + 4C2 + 8BC

C32 = 1.9020, B = 0.1260, and C = 0.5197 for CoO

Table 3. The energy levels (in eV) for the Ni2+ ion with 3d34s1 configuration in the spherical
symmetry (see footnote 5).

Hole configuration 3d34s1

State Energy for NiO

E(1P) = C31 −6B +3C 10.5283
E(a3P) = C31 −6B +3C −2G 9.7994
E(b3P) = C31 +G 10.0413
E(5P) = C31 −3G 8.8253
E(a1D) = C31 +5B +5C −α2 10.8461
E(b1D) = C31 +5B +5C +α2 15.8678
E(a3D) = C31 +5B +5C −2G −α2 10.3590
E(b3D) = C31 +5B +5C −2G +α2 15.3808
E(1F) = C31 +9B +3C 12.7086
E(a3F) = C31 −15B +G 7.6192
E(b3F) = C31 +9B +3C −2G 12.2215
E(5F) = C31 −15B −3G 6.6451
E(1G) = C31 −11B +3C 9.8017
E(3G) = C31 −11B +3C −2G 9.3146
E(1H) = C31 −6B +3C 10.5284
E(3H) = C31 −6B +3C −2G 10.0413

G = G2(4s; 3d), α2 = √
193B2 + 8BC + 4C2

C31 = 9.5558, B = 0.1453, C = 0.6149,
and G = 0.2435 for NiO

2.2. Three-hole states

Next, we construct the three-hole states (i.e. the states of the electronic configurations 3d74s0

and 3d74s2 or corresponding hole configurations 3d34s2 and 3d34s0), of which the first one
is used to treat the Co2+ ion. We do this by coupling the third d hole to the previously
obtained 3d24s0 states, using again the Clebsch–Gordan scheme. There are 120 resulting
three-hole states conveniently grouped as 2P, a2D, b2D, 2F, 2G, 2H, 4P, and 4F according to
their degeneracy in the spherical environment.
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Table 4. The energy levels (in eV) of the Fe2+ ion with 3d44s2 configuration in the spherical
symmetry (see footnote 5).

Hole configurations 3d44s0 and 3d44s2

State Energy for FeO

E(a1S) = C4n +10B +10C −α1 4.3318
E(b1S) = C4n +10B +10C +α1 12.2004
E(a3P) = C4n −5B +5.5C −α2 2.6397
E(b3P) = C4n −5B +5.5C +α2 6.2114
E(a1D) = C4n +9B +7.5C −α3 4.5766
E(b1D) = C4n +9B +7.5C +α3 9.3753
E(3D) = C4n −5B +4C 3.7205
E(5D) = C4n −21B 0.0000
E(1F) = C4n +6C 5.2357
E(a3F) = C4n −5B +5.5C −α4 2.6912
E(b3F) = C4n −5B +5.5C +α4 6.1600
E(a1G) = C4n −5B +7.5C −α5 3.7296
E(b1G) = C4n −5B +7.5C +α5 7.0017
E(3G) = C4n −12B +4C 2.9154
E(3H) = C4n −17B +4C 2.3402
E(1I) = C4n −15B +6C 3.5104

α1 = √
772B2 + 16C2 + 32BC

α2 = √
228B2 + 2.25C2 − 6BC

α3 = √
324B2 + 2.25C2 + 18BC

α4 = √
153B2 + 2.25C2 + 9BC

α5 = √
177B2 + 2.25C2 − 3BC

C42 = 2.4457, B = 0.1150, and C = 0.4700 for FeO

At this stage two different levels characterized by the same set of quantum numbers appear.
This leads to non-diagonal matrix elements between the states a2D and b2D. Their energies
have to be found from the secular equation. Because of this two 2D levels have a ∓α term in
the expressions for their energies.

The results for this configuration are presented in table 2.
The wavefunctions (eigenfunctions of the Hamiltonian) for the two 2D levels may only

be found if the values of parameters C32, B , and C are known.
In order to describe the electronic configuration 3d74s1 (e.g., an excited state of Ni2+ in

NiO) we must account for the single hole in the 4s shell. This is done by coupling this hole
to the 3d34s0 states using the Clebsch–Gordan procedure. The obtained states differ from the
original three-hole states by the total spin number, while the other quantum numbers remain
unchanged, which leads to additional splittings (described via the parameter G in table 3) of the
3d34s0 states. The energy levels for these states are the solutions of the Schrödinger equation
with the Hamiltonian (4).

The parameters used here are the same as in the previous case of two holes in the d shell
(except for G). The fitting of these parameters will be described below. Please note that in this
case the appearance of terms characterized by the same values of L and S is due to the addition
of the spin angular momentum (one s particle), while the energies depend on the value of L.
Thus there are analytical solutions (contain no square root) for the energies of the states a3P,
b3P, a3F, and b3F which do not have non-linear α-terms.
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Table 5. Experimentally measured energies (in eV) for ions in gas phase.

NiO2+ CoO2+ FeO2+

3d84s0 3d74s0 3d64s0

3F 0.0000 4F 0.0000 5D 0.0000
1D 1.7398 4P 1.8849 a3P 2.4060
3P 2.0658 2G 2.1051 3H 2.4861
1G 2.8652 2H 2.8171 a3F 2.6611

3d74s1 a2D 2.8591 3G 3.0450
5F 6.6587 1I 3.7639
a3F 7.6055 3D 3.8097
5P 8.8116 a1G 3.8296
3G 9.3146 a1S 4.3164
a3P 9.8130 a1D 4.4393

1F 5.3188
b3P 6.0939
b3F 6.2224
b1G 7.0949

2.3. Four-hole states

The spherical-symmetry states of the Fe2+ ground state in FeO and highly excited states in
NiO which belong to the electronic configurations 3d64s2 and 3d64s0 (hole configurations
3d44s0 for NiO2+ and 3d44s2 for FeO2+) are obtained by coupling another d hole to the three-
hole states calculated previously (the electronic configuration 3d74s1 of CoO2+, which gives
energies higher than the optical gap, is neglected in this work). The resulting states are given
in table 4.

The energy levels for these states are obtained by solving the Hamiltonian (4). The
resulting energy levels can be completely expressed in terms of the previously employed
parameters.

Comparing the energies in tables 4 and 5 we may conclude that CFT gives rather poor
agreement for the Fe ion, and, as will be seen later, for the bulk as well as for the (001) surface
of FeO. Because of this discrepancy we decided to present these results to show the limits of
CFT but will not use them further.

2.4. Fitting of the energy parameters

In order to obtain the numerical values of the energy levels of the ions in the spherical
environment we fit the values of all previously described parameters to gas phase
experiments [11] (table 5).

Having fitted the parameters B, C , and G as well as the prefactors Ci j (note that they are
different from values for charge-zero metal atoms in ferromagnetic metals), we can express
the energies and the wavefunctions of all states of spherical symmetry. Note that, for all the
ions, the 3dN+14s1 states (where N = 2, 3, 4 for Ni2+, Co2+, FeO2+) lie far above the optical
gap, therefore their influence on SHG is of minor importance and we will omit them in the
following consideration.

It is also important that the values of B and C for NiO fitted to two independent electronic
configurations are almost the same, which a posteriori justifies the use of CFT.
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3. Gap states in a crystal symmetry

In the previous section, we have calculated the many-body states of a TM ion in a spherically
symmetric environment. Here, we use crystal-field theory to obtain the wavefunctions and
energy levels in the cubic (Oh) environment of the bulk crystal6.

The lower symmetry of a cubic crystal or of the surface lowers the degeneracy of most of
the states, i.e. causes level splitting. Here, we address this splitting in a ligand-field approach,
calculating the crystal-field related levels.

The crystal field is added to the Hamiltonian described in equation (4):

Ĥ = Ĥsph + V̂lig. (5)

This field acts on the individual states, changing their energies:

Elig = 〈�|Ĥsph|�〉 + 〈�|V̂lig|�〉. (6)

The detailed description of the crystal-field method is given in [12]. Here we consider a
metal ion surrounded by six (in the bulk) or five (on the (001) surface assuming perfect bulk
termination) oxygen ions (point charges Ze), positioned at the distance R from the metal ion.
The potential Vlig of the crystal field is given as (N = 5 or 6):

Vlig(r) =
N∑

i=1

Ze2

|Ri − r| . (7)

After expansion of Vlig in terms of Legendre polynomials and application of the addition
theorem for spherical harmonics we arrive at the following form of Vlig for 3d and 4s particles
(terms up to the fourth order):

V Oh
lig = 6Ze2

R
C (0)

0 + r4 Ze2

R5

{
7

2
C (0)

4 +

√
70

4

(
C (−4)

4 + C (4)

4

)}
(8)

V C4v
lig = 5Ze2

R
C (0)

0 + r4 Ze2

R5

{
5

2
C (0)

4 +

√
70

4

(
C (−4)

4 + C (4)

4

)}

− r2 Ze2

R3
C (0)

2 − r
Ze2

R2
C (0)

1 − r3 Ze2

R4
C (0)

3 , (9)

where

C (m)
k = C (m)

k (θφ) =
(

4π

2k + 1

)1/2

Ykm(θφ). (10)

The inversion symmetry is broken on the (001), surface which leads to the appearance of
odd-order terms in V C4v

lig . Although these terms do not contribute to the multiplet energies, they
do allow electric-dipole transitions (parity forbidden in the centrosymmetric bulk) between the
levels and thus may lead to an SHG signal from the surface.

The one-particle energies under the action of this field are presented in table 6, where

a = Ze2

R
, (11)

b = 1

7

Ze2

R3
〈r2

3d〉, (12)

c = 1

42

Ze2

R5
〈r4

3d〉, (13)

〈rk
nl〉 =

∫
dr r2+k |Rnl(r)|2. (14)

6 We neglect the tiny rhombohedral distortion of the TMOs in the antiferromagnetic phase and in the C4v symmetry
of an (001) surface.
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Table 6. One-particle energy matrix elements under the action of the crystal field Vlig; see the
definitions in equations (11)–(13).

Bulk Surface

〈φ3d±2|Vlig|φ3d±2〉 6a + 7c 5a + 2b + 5c
〈φ3d±1|Vlig|φ3d±1〉 6a − 28c 5a − b − 20c
〈φ3d0|Vlig|φ3d0〉 6a + 42c 5a − 2b + 30c
〈φ3d±2|Vlig|φ3d∓2〉 35c 35c

These are the so called ligand-field parameters,where a describes the energy shift in an isotropic
crystal field (zero-order term in Vlig), c in the Oh symmetry, and b and c in the C4v symmetry,
respectively7. The energies of the 4s particles are not split due to the crystal field.

3.1. Bulk states

Group theory tells us that, in the cubic environment, states are not characterized any more by
the quantum numbers γ LS (where γ denotes different levels having the same values of L and
S), but are labelled in terms of the irreducible representations γ
S (where 
 = A1g, A2g, Eg,
T1g, T2g, A1u, A2u, Eu, T1u, T2u) of L in the point group Oh. As the first step we have to adapt
the previously computed wavefunctions for spherical symmetry by using cubic harmonics
presented in table 7. However, some of the states appear more than once in the configuration,
which leads to the off-diagonal elements of the energy matrix, connecting the states with equal

S. The additional index γ distinguishes them. These off-diagonalelements may be neglected
if the crystal-field strength is small enough compared to the electronic interaction, because of
their relatively small influence on the resulting states. Nevertheless, in the current work we
treat them exactly and diagonalize the energy matrices. This is a great improvement over
our previous calculations, in which we used the CFT diagonal-sum rule and did not consider
off-diagonal elements at all [13].

In principle, knowing the position of the ligands for a particular material, and possibly
approximating the ligands by point charges, we can calculate the crystal-field parameters.
Instead we use the available theoretical and experimental results for low lying states [14, 15]
(and references therein) and fit these parameters so that the energies of the already known
states are expressed correctly.

To fit the CFT parameters we use the energies for NiO, collected from the literature [16].
They are (in eV) 3A2g = 0.0000, 3T2g = 0.8406, a3T1g = 1.4586, 1Eg = 1.8474,
a1T2g = 2.5553, b3T1g = 2.8186. The resulting states for NiO bulk are presented in table 8.

The energies (in eV) used to fit the parameters for CoO given in [17] are a4T1g = 0.0000,
a4T2g = 0.6800, a2Eg = 1.9000, a2T1g = 2.5100, a2T2g = 2.5500, and 4A2g = 1.4100. The
results are given in table 9.

The energies (in eV) used to fit the parameters for FeO are 5T2g = 0.0000, 5Eg = 1.0400,
a3T1g = 1.7200, and a1A1g = 2.0200 eV are taken from [15]. The results are in table 10. The
fit quality decreases going from NiO via CoO to FeO.

3.2. Surface states

The statements in the previous paragraphs for the surface are also applicable to the bulk with
the only difference that 
 may be A1, A2, B1, B2, or E for the symmetry group C4v (this group
does not contain inversion, thus subscripts g and u disappear). Experimental energies for NiO

7 The parameters a, b, and c are different from the indices γ = a, b, . . . used to distinguish states with equal LS
(
S).
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Table 7. Simplified cubic harmonics (L+
m =

√
1
2 (Lm + L−m), L−

m =
√

1
2 (Lm − L−m)).

Free Cubic Cubic
ion state harmonics

S A1g S0

P T1g P−1 P0 P1

D Eg D0 D+
2

T2g D−
2 D−1 D1

F A2g F−
2

T1g F0

√
5
8 F−3 +

√
3
8 F1

√
5
8 F3 +

√
3
8 F−1

T2g F+
2

√
3
8 F−3 −

√
5
8 F1

√
3
8 F3 −

√
5
8 F−1

G A1g

√
5

12 G+
4 +

√
7
12 G0

Eg

√
7

12 G−
4 −

√
5

12 G0 G+
2

T1g G−
4

√
1
8 G−3 +

√
7
8 G1

√
1
8 G3 +

√
7
8 G−1

T2g G−
2

√
7
8 G−3 −

√
1
8 G1

√
7
8 G3 −

√
1
8 G−1

H Eg H −
2 H −

4

T1g H0

√
63
128 H−5 +

√
35

128 H3 +
√

15
64 H−1

√
63

128 H5 +
√

35
128 H−3 +

√
15
64 H1

T1g H +
4

√
5

128 H−5 −
√

81
128 H3 +

√
21
64 H−1

√
5

128 H5 −
√

81
128 H−3 +

√
21
64 H1

T2g H +
2

√
15
32 H−5 −

√
3
32 H3 −

√
7
16 H−1

√
15
32 H5 −

√
3

32 H−3 −
√

7
16 H1

I A1g

√
7
8 I +

4 −
√

1
8 I0

A2g

√
5
16 I +

6 −
√

11
16 I +

2

Eg

√
1
8 I +

4 +
√

7
8 I0

√
11
16 I +

6 +
√

5
16 I +

2

T1g I−
4

√
11
32 I−5 +

√
15
32 I3 −

√
3

16 I−1

√
11
32 I5 +

√
15
32 I−3 −

√
3
16 I1

T2g I−
2

√
165
256 I−5 −

√
81

256 I3 +
√

5
128 I−1

√
165
256 I5 −

√
81
256 I−3 +

√
5

128 I1

T2g I−
6

√
3

256 I−5 +
√

55
256 I3 +

√
99

128 I−1

√
3

256 I5 +
√

55
256 I−3 +

√
99
128 I1

Table 8. Bulk energies (in eV) of NiO computed within CFT (see footnote 5).

3A2g 0.0000 1Eg 2.1356 3T1g 3.1706 1T1g 3.6467 1T2g 4.2451
3T2g 0.8168 1T2g 2.8722 1A1g 3.3471 1Eg 4.1649 1A1g 8.1841
3T1g 1.4075

a = 0.0720, c = −0.0117

(from [14], in eV) are 3B1 = 0.0000, a3E = 0.6500, 3B2 = 1.0000, 3A2 = 1.3000, and
b3E = 1.4400. The resulting states for the NiO(001) surface are given in table 11.

At this point we see again that the values of the crystal-field parameters are very similar
for two independent fits (bulk and surface), as can be seen comparing the tables 8 and 11.

The parameters obtained in this way allow for the determination of the energy shifts caused
by the symmetry breaking, and thus for the determination of the energy levels of the surface.
This gives us the full knowledge about the wavefunctions (eigenfunctions of Hamiltonian) and
corresponding energies of states at the (001) surface of NiO.
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Table 9. Bulk energies (in eV) of CoO computed within CFT (see footnote 5).

4T1g 0.0000 2T1g 2.2329 2T1g 2.8161 2T2g 3.6590 2T1g 5.0521
4T2g 0.5681 2T2g 2.2354 2T2g 3.0758 2T1g 3.6619 2A2g 5.1501
4A2g 1.2393 4T1g 2.3541 2T1g 3.1293 2Eg 3.6851 2T2g 7.7899
2Eg 1.7612 2A1g 2.6310 2Eg 3.3476 2T2g 4.9821 2Eg 7.7981

a = 0.0328, c = −0.0096

Table 10. Bulk energies (in eV) of FeO computed within CFT (see footnote 5).

5Eg 0.0000 3T1g 3.0368 1A1g 3.6746 1A1g 5.0467 1A1g 7.0434
5T2g 0.4807 3Eg 3.1371 1T1g 3.7583 1T2g 5.0623 1T1g 7.1728
3T1g 2.1297 3T1g 3.2140 3Eg 3.9188 1T1g 5.4945 1Eg 7.2952
3Eg 2.4009 1T2g 3.3231 1T2g 4.0376 1T2g 5.5738 1T2g 7.6115
3T1g 2.5627 1Eg 3.3405 3T2g 4.0924 1A2g 5.6385 1T2g 9.5921
3T2g 2.5799 3T1g 3.4528 1Eg 4.1237 3T1g 6.3101 1Eg 9.8224
3A2g 2.7763 3T2g 3.5077 1A1g 4.4086 3T2g 6.5332 1A1g 12.5232
3A1g 2.9154 1A2g 3.5883 1T1g 4.4938 3A2g 6.5555
3T1g 2.9154 1T2g 3.6620 1Eg 4.5732 3T1g 6.6362

a = −0.0049, c = 0.0069

Table 11. The energy levels (in eV) of the Ni2+ ion on the (001) surface of NiO computed within
CFT (see footnote 5).

3B1 0.0000 3E 1.4615 1B2 2.9333 3A2 3.7000 1E 4.5158
3E 0.6945 1A1 1.9728 3E 3.1331 1B1 3.7821 1A1 4.7614
3B2 1.0208 1B1 2.1036 1A1 3.3764 1B2 3.9732 1A1 8.3387
3A2 1.2921 1E 2.7424 1E 3.4000 1A2 4.4751

a = 0.1036, b = 0.1926, c = −0.0146

Table 12. The energy levels (in eV) of the Co2+ ion on the (001) surface of CoO computed within
CFT (see footnote 5).

4A2 0.0000 2B1 2.2688 2E 2.6778 2E 3.8500 2E 5.8016
4E 0.1370 2B2 2.3464 2E 2.8383 2A2 4.2767 2A1 7.3305
4B2 0.2601 2E 2.3562 4E 3.2409 2E 4.4766 2E 7.9234
4B1 0.3910 4A2 2.4542 2B2 3.2868 2A1 4.5481 2B1 9.1996
4E 0.6539 2A2 2.5112 2A2 3.4292 2B2 5.0355 2B2 9.6423
2E 1.9290 2B2 2.5129 2B1 3.4476 2B1 5.3264
2A1 2.0786 2B1 2.5815 2E 3.4782 2E 5.4669
2A2 2.1402 2A1 2.5966 2A1 3.7509 2A2 5.6167

a = 0.0263, b = 0.3763, c = 0.0093

The experimentally known energies (in eV) for the (001) surface of CoO are [18]:
a4A2 = 0.0000, a4E = 0.0500, 4B2 = 0.3500, and b4E = 0.7000. Results of our calculations
are in table 12. Although the convergence of the resulting energies to their experimental values
is less good than the one for NiO, the results are still of a good quality since the CFT method
gives the proper order of levels and acceptable differences between ‘input’ and ‘output’ energies
in CFT. In our opinion, these differences show a fair applicability of CFT to CoO.

The energies for the (001) surface of FeO obtained in cluster calculations [15] are:
a5E = 0.0000, a5B2 = 0.1300, a5A1 = 0.4700, and a5B1 = 1.1400 eV. Results of our
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Table 13. The energy levels (in eV) of the Fe2+ ion on the (001) surface of FeO computed within
CFT (see footnote 5).

5E 0.0000 3A2 2.8845 3B2 3.9018 1E 4.8421 3E 7.2204
5B2 0.2184 3E 3.0232 1E 3.9257 1A1 5.1080 1B2 7.2361
5A1 0.5584 1A2 3.0976 3E 3.9545 1B1 5.2987 1A2 7.5717
5B1 1.1653 3E 3.2457 3A2 4.0445 1A1 5.4704 1A1 7.6124
3E 1.7334 3B1 3.2535 1B1 4.0564 1E 5.5207 1B1 7.6911
3B2 1.9895 3A1 3.3103 1A1 4.0657 1B1 5.7329 1E 7.7652
3A2 2.0447 3B2 3.3180 3E 4.2097 1B2 5.8541 1A1 7.8681
3E 2.3276 3E 3.3251 1A2 4.2110 1E 5.8913 1A1 9.3361
3A2 2.2737 1B2 3.4558 1E 4.3398 1A2 5.9807 1B1 9.8059
1A1 2.3422 1B1 3.4613 1B2 4.4016 3E 6.2927 1E 9.9376
3E 2.4973 1E 3.5139 1A1 4.4777 3B1 6.4380 1B2 10.3288
3B1 2.7265 1B2 3.6396 3A1 4.5070 3E 6.4508 1A1 12.7796
3E 2.7291 3A2 3.6621 1B1 4.5592 3A2 6.7527
3B2 2.8167 3A1 3.7119 3B1 4.5696 3B2 6.7965
1E 2.8484 3B1 3.7285 1E 4.5911 3A2 6.9618
3A1 2.8628 1A1 3.7913 1B2 4.7426 1E 7.1254

a = 0.0154, b = −0.1179, c = −0.0135

calculations are given in table 13. Unfortunately, the computed levels are not comparable with
the reference values. Even the proper symmetry of the ground state cannot be reproduced.
Thus we have reached the point where CFT fails. In our opinion, this is due to the smaller
number of electrons in the outermost shell. Compared with NiO and CoO the 3d shell in
FeO (consisting of six electrons) is far from being closed. In this case electronic correlations
between these electrons in the solid may differ from the ones for the free ion. Thus, the
parameters describing the Coulomb interaction for the free ion change their values already
in the bulk material. The other reason for this might be an inconsistency between CFT and
cluster calculations, which is very difficult to check experimentally because of the instability
of FeO against further oxidation which leads to the formation of Fe2O3 (thus precluding the
reliable measurements of the interfacial properties).

We have also tried to use the quantum chemistry results [19] for NiO as reference energies
in CFT and found a somewhat less good agreement compared with the experimental reference
energies presented above. Although quantum chemistry (in contrast to DFT-based methods)
is able to give the comparable values of the optical gap as well as intragap multiplet states, it
overestimates their values. However, the analysis in [19] shows that higher order correlations
are desired in order to improve the ab initio description of strongly correlated systems.

4. SHG

CFT results, presented before, allow us to compute the nonlinear optical susceptibility tensor
χ(2ω). According to the general theory presented in [20] this tensor can be computed as

χ
(2ω)
i jk (2q, 2ω) = −ie3

2q3�
·

∑

k,l,l′ ,l′′
〈k + 2q, l ′′|e2iq·r|k, l〉〈k, l|e−iq·r|k + q, l ′〉

× 〈k + q, l ′|e−iq·r|k + 2q, l ′′〉

×
f (Ek+2q,l′′ ,t)− f (Ek+q,l′ ,t)
Ek+2q,l′′ −Ek+q,l′ −h̄ω+ih̄α

− f (Ek+q,l′ ,t)− f (Ek,l,t)
Ek+q,l′ −Ek,l −h̄ω+ih̄α

Ek+2q,l′′ − Ek,l − 2h̄ω + 2ih̄α
. (15)
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Figure 1. Static dependence of χ
(2ω)
i jk on the frequency of the incident laser for the NiO(001)

surface.

It is clearly seen from this equation that the incident laser frequency ω should be adjusted to the
resonances of the system. This expression is modified towards a CFT basis set; namely, the one-
particle basis set is replaced by the many-particle one provided by CFT, the summations over
bands replaced by summations over multiplet levels,and summation in the k-space transformed
into the integration over the real space. Because CFT fails to give acceptable results for FeO,
we concentrate here on NiO and CoO.

Setting the time t equal to zero and choosing unity for the ground state occupancy in
equation (15) we are able to study the frequency-dependent response of the sample. There are
three ingredients needed for our calculations of the nonlinear susceptibility tensor elements:
the wavefunctions of the NiO many-body eigenstates, the transition matrix elements between
these states, and the energy levels of these states. The corresponding energies were presented in
the previous sections. However, a reliable calculation of the transition matrix elements would
require an ab initio theory of static and dynamic optical phenomena, which is unfeasible so
far (the material class of transition metal oxides is one of the most difficult quantum systems
due to their strong electronic correlations). Instead, we will use the approximation of constant
transition matrix elements, with selection rules allowing for distinguishing the tensor elements.

Here, we present the spectra of two tensor elements: the prototypic paramagnetic tensor
element χ(2ω)

zzz and the prototypic antiferromagnetic tensor element χ(2ω)
zxy in figure 1. In both

spectra, all computed features fall within the gap, which we assume to be at 4.0 eV for the
oxide surfaces8. The dominant structure in both spectra corresponds to the transitions from
the ground state to the states located near 2h̄ω = 3.0 eV; see table 11. The position of the
peak around 1.5 eV corresponds to the fact that the tensor describes SHG. Other, smaller peaks
related to transitions between various states are also present. Another feature of the calculated
spectra is that the tensor elements are complex and their phases vary. This has important
consequences for the AF domain imaging using SHG. It would be highly desirable to compare
with a surface SHG experiment [21].

The main distinctive features of the spectrum of the AF tensor element χ(2ω)
zxy are additional

peaks at 1.02, 1.73, and 2.46 eV, where at best shoulders exist in the spectrum of the
paramagnetic tensor element χ(2ω)

zzz . Consequently, this is an ‘antiferromagnetic’ spectral
line, which we suppose is especially suitable for nonlinear magneto-optics. Note that the

8 In general, the surface gap is smaller than that of the bulk due to the reduced coordination number.
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Figure 2. Static dependence of χ
(2ω)
i jk on the frequency of the incident laser for the CoO(001)

surface.

AF SHG tensor element χ(2ω)
zxy is linear in the AF order parameter. Although magnetic and

nonmagnetic tensor elements differ in magnitude, they can be distinguished in experiment,
which is a favourable condition for AF domain imaging. Taking into account the magnitudes
of both tensor elements presented in this section, the domain contrast should be comparable
to the one in ferromagnets (where it is of the order of unity in SHG, as opposed to the small
domain contrast in the linear magneto-optical Kerr effect), which suggests an SHG process to
be used as a detection technique for the nonlinear magneto-optical response.

Using the results provided by CFT for the (001) surface of CoO, we have computed in
the same way the prototypical paramagnetic and antiferromagnetic tensor elements for this
system. The results are shown in figure 2. The presence of an additional unpaired electron
in the 3d shell leads to a bigger number of levels within the gap and the structure of these
tensor elements for CoO is more complicated. However, there are characteristic features
which allow us to distinguish the contributions of χ(2ω)

zzz from those of χ(2ω)
zxy . Most of these

features appearing above the main peak (around 1 eV) make it more difficult to access them
experimentally. However, the possible bunching of levels can make up for the disadvantage
of their large number.

5. Conclusions, outlook

The electronic structure of transition metal oxides NiO, CoO, and FeO and their (001) surfaces
is described by means of the CFT, which efficiently handles the systems whose behaviour is
mostly determined by strongly correlated electrons of the outermost incomplete shell (here
3d electrons). Using CFT results, measurable features of TMOs are computed, namely the
nonlinear optical susceptibility tensor. In order to find the appropriate laser frequency we
compute the dependence of typical magnetic and crystallographic elements of χ(2ω) on the
frequency of the incident light. There exist frequencies for which these tensor elements
have different behaviours, which means that the laser pulse of a specially chosen frequency
allows us to identify the magnetic state of the surface. Dynamical SHG of antiferromagnetic
spectral lines show ultrafast spin dynamics [13]. Long lasting coherence together with the
possibility of ultrafast (of the order of femtoseconds) spin switching makes these materials
very promising for technological applications, such as permanent magnetic storage devices
and quantum computing. Recently, the quantum beating effects on the picosecond timescale



CFT approach to SHG on AFM NiO(001), CoO(001), and FeO(001) surfaces 7503

in bulk NiO were shown experimentally [22], with the coherence time exceeding 100 ps. Until
now, among solids, only semiconductors and nuclear spins have been known to exhibit the
combination of these features, suffering however from a much slower dynamics. Moreover,
NiO possesses a high density of permanent magnetic moments (like metals), which is an option
for device size reduction. Comparing NiO and CoO, we may conclude that the former one is
more suitable for nonlinear optics. Although the bigger number of levels lying within the gap
of CoO may suppress well pronounced peaks in the SHG signal (unless bunching of intragap
levels occurs) this material is a good candidate for the experiment on spin dynamics. In addition
to the fact that we were not able to get a proper theoretical description of FeO within CFT,
one may suspect more difficulties with this material in a nonlinear optical experiment due to
its nonstoichiometric behaviour.

A more detailed first principles description of nonlinear optical phenomena requires
further theoretical investigations as well as experimental measurements [21]. In particular,
the relativistic effects as well as a treatment of the interaction with a high intensity laser field
are of importance.
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